S

Hybrid recommendation approaches

The three most prominent recommendation approaches discussed in the pre-
vious chapters exploit different sources of information and follow different
paradigms to make recommendations. Although they produce results that are
considered to be personalized based on the assumed interests of their recip-
ients, they perform with varying degrees of success in different application
domains. Collaborative filtering exploits a specific type of information (i.e.,
item ratings) from a user model together with community data to derive recom-
mendations, whereas content-based approaches rely on product features and
textual descriptions. Knowledge-based algorithms, on the other hand, reason on
explicit knowledge models from the domain. Each of these basic approaches
has its pros and cons — for instance, the ability to handle data sparsity and
cold-start problems or considerable ramp-up efforts for knowledge acquisi-
tion and engineering. These have been discussed in the previous chapters.
Figure 5.1 sketches a recommendation system as a black box that transforms
input data into a ranked list of items as output. User models and contextual
information, community and product data, and knowledge models constitute
the potential types of recommendation input. However, none of the basic ap-
proaches is able to fully exploit all of these. Consequently, building hybrid
systems that combine the strengths of different algorithms and models to over-
come some of the aforementioned shortcomings and problems has become
the target of recent research. From a linguistic point of view, the term hybrid
derives from the Latin noun Aybrida (of mixed origin) and denotes an object
made by combining two different elements. Analogously, hybrid recommender
systems are technical approaches that combine several algorithm implemen-
tations or recommendation components. The following section introduces op-
portunities for hybridizing algorithm variants and illustrates them with several
examples.

124



5.1 Opportunities for hybridization 125

Input: Output:
_

\/

User profile and
contextual parameters \

v

item | score
i1 0.9

—_—
T —p 2 [
. 1
Community data - =T 03
[Title T Genre JActors | .. ] N
1 [ [ ] / Recommendation  Recommendation

Product features component list

~
Ay —

Knowledge models

Figure 5.1. Recommender system as a black box.

5.1 Opportunities for hybridization

Although many recommender applications are actually hybrids, little theoret-
ical work has focused on how to hybridize algorithms and in which situa-
tions one can expect to benefit from hybridization. An excellent example for
combining different recommendation algorithm variants is the Netflix Prize
competition', in which hundreds of students and researchers teamed up to
improve a collaborative movie recommender by hybridizing hundreds of dif-
ferent collaborative filtering techniques and approaches to improve the overall
accuracy. Robin Burke’s article, “Hybrid Recommender Systems: Survey and
Experiments” (2002b) is a well-known survey of the design space of different
hybrid recommendation algorithms. It proposes a taxonomy of different classes
of recommendation algorithms. Collaborative filtering and content-based and
knowledge-based recommender systems are the three base approaches covered
in this chapter. Furthermore, Burke (2002b) investigates utility-based recom-
mendation that can be considered as a specific subset of knowledge-based
recommender systems, because a utility scheme can be seen as another specific
encoding of explicit personalization knowledge. Demographic recommender
systems make collaborative propositions based on demographic user profiles.

1 See http://www.netflixprize.com for reference.



126 5 Hybrid recommendation approaches

As mentioned in Chapter 2, demographic information can be seen as just an
additional piece of user knowledge that can be exploited to determine similar
peers on the web and is therefore a variant of a collaborative approach. For
instance, in the case that few user ratings are available, demographic data can be
used to bootstrap a recommender system as demonstrated by Pazzani (1999b).
Thus, the basic recommendation paradigm is one dimension of the problem
space and will be discussed further in the following subsection.

The second characterizing dimension is the system’s hybridization design —
the method used to combine two or more algorithms. Recommendation com-
ponents can work in parallel before combining their results, or two or more
single recommender systems may be connected in a pipelining architecture in
which the output of one recommender serves as input for the next one.

5.1.1 Recommendation paradigms

In general, a recommendation problem can be treated as a utility function rec
that predicts the usefulness of an item i in a set of items / for a specific
user u from the universe of all users U. Adomavicius and Tuzhilin (2005)
thus formalized rec as a function U x I + R. In most applications, R is the
interval [0...1] representing the possible utility scores of a recommended
item. An item’s utility must always be seen in the microeconomic context of a
specific user and the sales situation he or she is currently in. Utility therefore
denotes an item’s capability to fulfill an abstract goal, such as best satisfying
the assumed needs of the user or maximizing the retailer’s conversion rate.
Consequently, the prediction task of a recommender algorithm is to presume
this utility score for a given user and item. Utility-based or knowledge-based
recommendation systems, for instance, derive the score values directly from
a priori known utility schemes; collaborative filtering methods estimate them
from community ratings. In contrast, the selection task of any recommender
system RS is to identify those n items from a catalog I that achieve the highest
utility scores for a given user u:

RS(u,n)={iy,...,ix, ..., 10y}, where 5.1
i1,...,0, €1 and
Vk rec(u, iy) > 0 A rec(u, iy) > rec(u, ix+1)

Thus, a recommendation system RS will output a ranked list of the top n items
that are presumably of highest utility for the given user. We will come back to



5.1 Opportunities for hybridization 127

this formalization in the following sections to specify the different hybridization
designs.

As already mentioned, we focus on the three base recommendation
paradigms: collaborative, content-based and knowledge-based. The collabo-
rative principle assumes that there are clusters of users who behave in a similar
way and have comparable needs and preferences. The task of a collaborative
recommender is thus to determine similar peers and derive recommendations
from the set of their favorite items. Whereas the content-based paradigm fol-
lows a “more of the same” approach by recommending items that are similar to
those the user liked in the past, knowledge-based recommendation assumes an
additional source of information: explicit personalization knowledge. As de-
scribed in Chapter 4, this knowledge can, for instance, take the form of logical
constraints that map the user’s requirements onto item properties. Multiattribute
utility schemes and specific similarity measures are alternate knowledge repre-
sentation mechanisms. These knowledge models can be acquired from a third
party, such as domain experts; be learned from past transaction data; or use a
combination of both. Depending on the representation of the personalization
knowledge, some form of reasoning must take place to identify the items to
recommend.

Consequently, the choice of the recommendation paradigm determines the
type of input data that is required. As outlined in Figure 5.1, four different types
exist. The user model and contextual parameters represent the user and the spe-
cific situation he or she is currently in. For instance, the items the user has rated
so far; the answers the user has given in a requirements elicitation dialogue;
demographic background information such as address, age, or education; and
contextual parameters such as the season of the year, the people who will ac-
company the user when he or she buys or consumes the item (e.g., watching a
movie), or the current location of the user. The latter contextual parameters are
of particular interest and are therefore extensively studied in mobile or more
generally pervasive application domains; in Chapter 12 we will specifically
focus on personalization strategies applied in physical environments.

It can be assumed that all these user- and situation-specific data are stored in
the user’s profile. Consequently, all recommendation paradigms require access
to this user model to personalize the recommendations. However, depending
on the application domain and the usage scenario, only limited parts of the user
model may be available. Therefore, not all hybridization variants are possible
or advisable in every field of application.

As depicted in Table 5.1, recommendation paradigms selectively require
community data, product features, or knowledge models. Collaborative filter-
ing, for example, works solely on community data and the current user profile.



128 5 Hybrid recommendation approaches

Table 5.1. Input data requirements of recommendation algorithms.

User profile and Community  Product  Knowledge
Paradigm contextual parameters data features models
Collaborative Yes Yes No No
Content-based Yes No Yes No
Knowledge-based Yes No Yes Yes

5.1.2 Hybridization designs

The second dimension that characterizes hybrid algorithms is their design.
Burke’s taxonomy (2002b) distinguishes among seven different hybridization
strategies that we will refer to in this book. Seen from a more general per-
spective, however, the seven variants can be abstracted into only three base
designs: monolithic, parallelized, and pipelined hybrids. Monolithic denotes
a hybridization design that incorporates aspects of several recommendation
strategies in one algorithm implementation. As depicted in Figure 5.2, several
recommenders contribute virtually because the hybrid uses additional input data
that are specific to another recommendation algorithm, or the input data are
augmented by one technique and factually exploited by the other. For instance,
a content-based recommender that also exploits community data to determine
item similarities falls into this category.

The two remaining hybridization designs require at least two separate rec-
ommender implementations, which are consequently combined. Based on their
input, parallelized hybrid recommender systems operate independently of one
another and produce separate recommendation lists, as sketched in Figure 5.3.
In a subsequent hybridization step, their output is combined into a final set
of recommendations. Following Burke’s taxonomy, the weighted, mixed, and
switching strategies require recommendation components to work in parallel.

Hybrid
Input > Recommender

s

Recommender 1 — Recommender n

p Output

Figure 5.2. Monolithic hybridization design.



5.2 Monolithic hybridization design 129

When several recommender systems are joined together in a pipeline archi-
tecture, as depicted in Figure 5.4, the output of one recommender becomes part
of the input of the subsequent one. Optionally, the subsequent recommender
components may use parts of the original input data, too. The Cascade and
meta-level hybrids, as defined by Burke (2002b), are examples of such pipeline
architectures.

The following sections examine each of the three base hybridization designs
in more detail.

5.2 Monolithic hybridization design

Whereas the other two designs for hybrid recommender systems consist of
two or more components whose results are combined, monolithic hybrids con-
sist of a single recommender component that integrates multiple approaches
by preprocessing and combining several knowledge sources. Hybridization is
thus achieved by a built-in modification of the algorithm behavior to exploit
different types of input data. Typically, data-specific preprocessing steps are
used to transform the input data into a representation that can be exploited
by a specific algorithm paradigm. Following Burke’s taxonomy (2002b), both
feature combination and feature augmentation strategies can be assigned to this
category.

/‘, Recommender 1 \
Input Hybridization step » Output
\“ Recommender n /
Figure 5.3. Parallelized hybridization design.
—— — P
-~ ——
Input —»| Recommender 1 —» ---—p| Recommender n » Output

Figure 5.4. Pipelined hybridization design.



130 5 Hybrid recommendation approaches

Table 5.2. Community and product knowledge.

User Item1 Item2 Item3 Item4 Item5 Item Genre
Alice 1 1 Item1 romance
Userl 1 1 1 Item2 mystery
User2 1 1 1 Item3 mystery
User3 1 1 Item4 mystery
User4 1 Item5 fiction

5.2.1 Feature combination hybrids

A feature combination hybrid is a monolithic recommendation component that
uses a diverse range of input data. For instance, Basu et al. (1998) proposed
a feature combination hybrid that combines collaborative features, such as a
user’s likes and dislikes, with content features of catalog items. The following
example illustrates this technique in the book domain.

Table 5.2 presents several users’ unary ratings of a product catalog. Rat-
ings constitute implicitly observed user feedback, such as purchases. Product
knowledge is restricted to an item’s genre. Obviously, in a pure collaborative ap-
proach, without considering any product features, both User1 and User2 would
be judged as being equally similar to Alice. However, the feature-combination
approach of Basu et al. identifies new hybrid features based on community and
product data. This reflects “the common human-engineering effort that involves
inventing good features to enable successful learning” (Basu et al. 1998).

Table 5.3 thus provides a hybrid encoding of the information contained in
Table 5.2. These features are derived by the following rules. If a user bought
mainly books of genre X (i.e., two-thirds of the total purchases and at least
two books) we set the user characteristic User likes many X books to true.

Table 5.3. Hybrid input features.

Feature Alice Userl User2 User3 User4
User likes many mystery books true true

User likes some mystery books true true

User likes many romance books

User likes some romance books true true

User likes many fiction books
User likes some fiction books true true true




5.2 Monolithic hybridization design 131

Table 5.4. Different types of user feedback.

User Ruay Ryiew R Rbuy
Alice ns, ng i5 k5 %)
Userl ny,ns i3, i5 k5 il
User2 ns, Ny i3, i5, i7 [ i3
User3 na, n3, n4 iz, i4, Is ka, k4 iy

Analogously, we also set User likes some X books to true, requiring one-third
of the user’s purchases, or at least one item in absolute numbers. Although
the transformation seems to be quite trivial at first glance, it nevertheless re-
flects that some knowledge, such as an item’s genre, can lead to considerable
improvements. Initially Alice seems to possess similar interests to Userl and
User2, but the picture changes after transforming the user/item matrix. It ac-
tually turns out that User2 behaves in a very indeterminate manner by buying
some books of all three genres. In contrast, Userl seems to focus specifically
on mystery books, as Alice does. For this example we determine similar peers
by simply matching user characteristics, whereas Basu et al. (1998) used set-
valued user characteristics and the inductive rule learner Ripper (Cohen 1996)
in their original experiments.

Another approach for feature combination was proposed by Zanker and
Jessenitschnig (2009b), who exploit different types of rating feedback based
on their predictive accuracy and availability.

Table 5.4 depicts a scenario in which several types of implicitly or explicitly
collected user feedback are available as unary ratings, such as navigation actions
R4y, click-throughs on items’ detail pages R, contextual user requirements
R.:x,oractual purchases Ry,,,. These categories differentiate themselves by their
availability and their aptness for making predictions. For instance, navigation
actions and page views of online users occur frequently, whereas purchases
are less common. In addition, information about the user’s context, such as the
keywords used for searching or input to a conversational requirements elicita-
tion dialog, is typically a very useful source for computing recommendations
(Zanker and Jessenitschnig 2009a). In contrast, navigation actions typically
contain more noise, particularly when users randomly surf and explore a shop.
Therefore, rating categories may be prioritized — for example (Rpyy, Rex) <
Ryiewy < Ry, Where priority decreases from left to right.

Thus, when interpreting all rating data in Table 5.4 in a uniform man-
ner, User2 and User3 seem to have the most in common with Alice, as both
share at least three similar ratings. However, the algorithm for neighborhood



132 5 Hybrid recommendation approaches

determination by Zanker and Jessenitschnig (2009b) uses the given precedence
rules and thus initially uses Ry, and R.;, as rating inputs to find similar peers.
In this highly simplified example, Userl would be identified as being most sim-
ilar to Alice. In the case that not enough similar peers can be determined with
satisfactory confidence, the feature combination algorithm includes additional,
lower-ranked rating input. A similar principle for feature combination was also
exploited by Pazzani (1999b), who used demographic user characteristics to
bootstrap a collaborative recommender system when not enough item ratings
were known.

Because of the simplicity of feature combination approaches, many cur-
rent recommender systems combine collaborative and/or content-based fea-
tures in one way or another. However, the combination of input features using
knowledge-based approaches, such as constraints, with content-based or col-
laborative knowledge sources has remained largely unexplored. We suggest
that critique-based systems that elicit user feedback in the form of constraints
on a specific item, such as price should be less than the price for item a, could
be a suitable starting point for future research.

5.2.2 Feature augmentation hybrids

Feature augmentation is another monolithic hybridization design that may be
used to integrate several recommendation algorithms. In contrast with feature
combination, this hybrid does not simply combine and preprocess several types
of input, but rather applies more complex transformation steps. In fact, the out-
put of a contributing recommender system augments the feature space of the
actual recommender by preprocessing its knowledge sources. However, this
must not be mistaken for a pipelined design, as we will discuss in the follow-
ing section, because the implementation of the contributing recommender is
strongly interwoven with the main component for reasons of performance and
functionality.

Content-boosted collaborative filtering is an actual example of this variant
(Melvilleetal. 2002). It predicts a user’s assumed rating based on a collaborative
mechanism that includes content-based predictions.

Table 5.5 presents an example user/item matrix, together with rating values
for Item5 (vyserrems) as well as the Pearson correlation coefficient Pyjice, yser
signifying the similarity between Alice and the respective users. Furthermore,
it denotes the number of user ratings (nyy.,) and the number of overlapping
ratings between Alice and the other users (7 4sice user)- The rating matrix for
this example is complete, because it consists not only of users’ actual ratings
ru.i, but also of content-based predictions ¢, ; in the case that a user rating



5.2 Monolithic hybridization design 133

Table 5.5. Hybrid input features.

User VUser, Item5 PAlice, User  NUser N Alice, User

Alice ? 40
Userl 4 0.8 14 6
User2 2.2 0.7 55 28

is missing. Melville et al. (2002) therefore first create a pseudo-user-ratings
vector vy, ;:

ryi - ifuser u rated item i

Uy,i = ..
¢y - else content-based prediction

Based on these pseudo ratings, the algorithm computes predictions in a second
step. However, depending on the number of rated items and the number of
co-rated items between two users, weighting factors may be used to adjust the

predicted rating value for a specific user—item pair a, i, as illustrated by the
following equation for a content-boosted collaborative recommender.

n n
recchcf(a7 l) = SWyCq,i + § hwa,u P[t,uvu.i / Swy + § hwa,u Pa,u
u=1 u=1

u#a uta
(5.2)
hw, , is the hybrid correlation weight that is defined as follows:

hwg,, = $gq.u + hm,,, where

{"5“6“ D ifn,, <50

S8au =
“ 1 . else
2
g w = —2a ith
m[t +mu
2 ifn; < 50
m; =% i
1 :else

The hybrid correlation weight (hw,_, ) adjusts the computed Pearson correlation
based on a significance weighting factor sg, , (Herlocker et al. 1999) that favors
peers with more co-rated items. When the number of co-rated items is greater
than 50, the effect tends to level off. In addition, the harmonic mean weighting
factor (hm,_, ) reduces the influence of peers with a low number of user ratings,



134 5 Hybrid recommendation approaches

as content-based pseudo-ratings are less reliable if derived from a small number
of user ratings.

Similarly, the self-weighting factor sw; reflects the confidence in the algo-
rithm’s content-based prediction, which obviously also depends on the number
of original rating values of any user i. The constant max was set to 2 by Melville
et al. (2002).

5 xmax : ifn; <50

Sw; =
max . else

Thus, assuming that the content-based prediction for ItemS5 is cujice, 11ems = 3,
recpcr(Alice, Item3) is computed as follows:

1.6 x 3+ (0.535x 0.8 x4+ 1.45x0.7x2.2) 8.745
1.6 + (0.535 x 0.8 + 1.45 x 0.7) "~ 3.043

Consequently, the predicted value (on a 1-5 Likert scale) indicates that Alice
will not be euphoric about ItemS5, although the most similar peer, Userl, rated it
with a 4. However, the weighting and adjustment factors place more emphasis
on User 2 and the content-based prediction. Also note that we ignored rating
adjustments based on users’ rating averages as outlined in Chapter 2 and defined
in Formula 2.3 for reasons of simplicity.

Additional applications of feature augmentation hybrids are presented in
Mooney and Roy’s (1999) discussion of a content-based book recommender and
in Torres et al.’s (2004) recommendation of research papers. The latter employs,
among other hybrid algorithm variants, a feature augmentation algorithm that
interprets article citations as collaborative recommendations.

=2.87

5.3 Parallelized hybridization design

Parallelized hybridization designs employ several recommenders side by side
and employ a specific hybridization mechanism to aggregate their outputs.
Burke (2002b) elaborates on the mixed, weighted, and switching strategies.
However, additional combination strategies for multiple recommendation lists,
such as majority voting schemes, may also be applicable.

5.3.1 Mixed hybrids

A mixed hybridization strategy combines the results of different recommender
systems at the level of the user interface, in which results from different tech-
niques are presented together. Therefore the recommendation result for user u



5.3 Parallelized hybridization design 135

and item i of a mixed hybrid strategy is the set of -tuples (score, k) for each of
its n constituting recommenders recy:
n
recmixed(u. i) = |_J(reci(u. 1), k) (5.3)
k=1

The top-scoring items for each recommender are then displayed to the user
next to each other, as in Burke et al. (1997) and Wasfi (1999). However, when
composing the different results into a single entity, such as a television viewing
schedule, some form of conflict resolution is required. In the personalized televi-
sion application domain, Cotter and Smyth (2000) apply predefined precedence
rules between different recommender functions. Zanker et al. (2007) describe
another form of a mixed hybrid, which merges the results of several recom-
mendation systems. It proposes bundles of recommendations from different
product categories in the tourism domain, in which for each category a separate
recommender is employed. A recommended bundle consists, for instance, of
accommodations, as well as sport and leisure activities, that are derived by sep-
arate recommender systems. A Constraint Satisfaction Problem (CSP) solver is
employed to resolve conflicts, thus ensuring that only consistent sets of items
are bundled together according to domain constraints such as “activities and
accommodations must be within 50 km of each other”.

5.3.2 Weighted hybrids

A weighted hybridization strategy combines the recommendations of two or
more recommendation systems by computing weighted sums of their scores.
Thus, given n different recommendation functions rec; with associated relative
weights S:

n
recueighea(t. 1) = ) _ B x recy(u. i) (54)
k=1

where item scores need to be restricted to the same range for all recommenders
and Y }_, B« = 1. Obviously, this technique is quite straightforward and is thus
a popular strategy for combining the predictive power of different recommen-
dation techniques in a weighted manner. Consider an example in which two
recommender systems are used to suggest one of five items for a user Alice. As
can be easily seen from Table 5.6, these recommendation lists are hybridized by
using a uniform weighting scheme with 8; = 8, = 0.5. The weighted hybrid
recommender rec,, thus produces a new ranking by combining the scores from
rec and rec,. Items that are recommended by only one of the two users, such
as Item2, may still be ranked highly after the hybridization step.



136 5 Hybrid recommendation approaches

Table 5.6. Recommendations of weighted hybrid.

recy recy rec, rec; recy, rec,,
item score rank score rank score rank

Item1 0.5 1 0.8 2 0.65 1

Item2 0 0.9 1 0.45 2

Item3 0.3 2 0.4 3 0.35 3

Item4 0.1 3 0 0.05

Item5 0 0 0

If the weighting scheme is to remain static, the involved recommenders must
also produce recommendations of the same relative quality for all user and item
combinations. To estimate weights, an empirical bootstrapping approach can be
taken. For instance, Zanker and Jessenitschnig (2009a) conducted a sensitivity
analysis between a collaborative and a knowledge-based recommender in the
cigar domain to identify the optimum weighting scheme. The P-Tango system
(Claypool et al. 1999) is another example of such a system, blending the output
of a content-based and a collaborative recommender in the news domain. This
approach uses a dynamic weighting scheme and will be explained in detail
in the following section. Starting from a uniform distribution, it dynamically
adjusts the relative weights for each user to minimize the predictive error in
cases in which user ratings are available. Furthermore, it adapts the weights
on a per-item basis to correctly reflect the relative strengths of each prediction
algorithm. For instance, the collaborative filtering gains weight if the item has
been rated by a higher number of users.

We explain such a dynamic weighting approach by returning to the initial
example. Let us assume that Alice purchased Item1 and Item4, which we will
interpret as positive unary ratings. We thus require a weighting that minimizes
a goal metric such as the mean absolute error (MAE) of predictions of a user
for her rated items R (see Chapter 2).

Zr;eR Z’IZ:I lBk X |reck(u, l) - ril
[R|

MAE = (5.5
If we interpret Alice’s purchases as very strong relevance feedback for her
interest in an item, then the set of Alice’s actual ratings R will contain r; =
ry = 1. Table 5.7 summarizes the absolute errors of rec; and rec,’s predictions
(denoted in Table 5.6) for different weighting parameters. Table 5.7 shows
that the MAE improves as rec; is weighted more strongly. However, when
examining the situation more closely, it is evident that the weight assigned to



5.3 Parallelized hybridization design 137

Table 5.7. Dynamic weighting parameters, absolute errors, and

MAE: for user Alice.
B B2 item T rec, rec, error MAE
0.1 0.9 Item1 1 0.5 0.8 0.23

Item4 1 0.1 0 0.99 0.61
0.3 0.7 Item1 1 0.5 0.8 0.29

Item4 1 0.1 0 0.97 0.63
0.5 0.5 Item1 1 0.5 0.8 0.35

Item4 1 0.1 0 0.95 0.65
0.7 0.3 Item1 1 0.5 0.8 0.41

Item4 1 0.1 0 0.93 0.67
0.9 0.1 Item1 1 0.5 0.8 0.47

Item4 1 0.1 0 0.91 0.69

rec; should be strengthened. Both rated items are ranked higher by rec; than by
rec, — Item1 is first instead of second and Item4 is third, whereas rec, does not
recommend Item4 at all. Thus, when applying a weighted strategy, one must
ensure that the involved recommenders assign scores on comparable scales
or apply a transformation function beforehand. Obviously, the assignment of
dynamic weighting parameters stabilizes as more rated items are made available
by users. In addition, alternative error metrics, such as mean squared error or
rank metrics, can be explored. Mean squared error puts more emphasis on large
errors, whereas rank metrics focus not on recommendation scores but on ranks.

In the extreme case, dynamic weight adjustment could be implemented as
a switching hybrid. There, the weights of all but one dynamically selected
recommenders are set to 0, and the output of a single remaining recommender
is assigned the weight of 1.

5.3.3 Switching hybrids

Switching hybrids require an oracle that decides which recommender should
be used in a specific situation, depending on the user profile and/or the quality
of recommendation results. Such an evaluation could be carried out as follows:

ik 1 1...n recsiching(u, i) = reci(u, i) (5.6)

where k is determined by the switching condition. For instance, to overcome
the cold-start problem, a knowledge-based and collaborative switching hybrid



138 5 Hybrid recommendation approaches

could initially make knowledge-based recommendations until enough rating
data are available. When the collaborative filtering component can deliver rec-
ommendations with sufficient confidence, the recommendation strategy could
be switched. Furthermore, a switching strategy can be applied to optimize re-
sults in a similar fashion to the NewsDude system (Billsus and Pazzani 2000).
There, two content-based variants and a collaborative strategy are employed in
an ordered manner to recommend news articles. First, a content-based nearest
neighbor recommender is used. If it does not find any closely related articles,
a collaborative filtering system is invoked to make cross-genre propositions;
finally, a naive Bayes classifier finds articles matching the long-term interest
profile of the user. Zanker and Jessenitschnig (2009a) proposed a switching
strategy that actually switches between two hybrid variants of collaborative fil-
tering and knowledge-based recommendation. If the first algorithm, a cascade
hybrid, delivers fewer than n recommendations, the hybridization component
switches to a weighted variant as a fallback strategy. Even more adaptive switch-
ing criteria can be thought of that could even take contextual parameters such as
users’ intentions or expectations into consideration for algorithm selection. For
instance, van Setten (2005) proposed the domain-independent Duine frame-
work that generalizes the selection task of a prediction strategy and discusses
several machine learning techniques in that context. To summarize, the quality
of the switching mechanism is the most crucial aspect of this hybridization
variant.

5.4 Pipelined hybridization design

Pipelined hybrids implement a staged process in which several techniques
sequentially build on each other before the final one produces recommendations
for the user. The pipelined hybrid variants differentiate themselves mainly
according to the type of output they produce for the next stage. In other words,
a preceding component may either preprocess input data to build a model that
is exploited by the subsequent stage or deliver a recommendation list for further
refinement.

5.4.1 Cascade hybrids

Cascade hybrids are based on a sequenced order of techniques, in which each
succeeding recommender only refines the recommendations of its predecessor.
The recommendation list of the successor technique is thus restricted to items
that were also recommended by the preceding technique.



5.4 Pipelined hybridization design 139

Formally, assume a sequence of n techniques, where rec; represents the
recommendation function of the first technique and rec, the last one. Conse-
quently, the final recommendation score for an item is computed by the nth
technique. However, an item will be suggested by the kth technique only if
the (k — 1)th technique also assigned a nonzero score to it. This applies to all
k > 2 by induction as defined in Formula (5.7).

reccascade(ua l) = rec,,(u, l) (57)

where Vk > 2 must hold:

recy(u,i) : recy—1(u,i) #0

reci(u,i) = |
: else

Thus in a cascade hybrid all techniques, except the first one, can only change
the ordering of the list of recommended items from their predecessor or ex-
clude an item by setting its utility to 0. However, they may not introduce new
items — items that have already been excluded by one of the higher-priority
techniques — to the recommendation list. Thus cascading strategies do have
the unfavorable property of potentially reducing the size of the recommenda-
tion set as each additional technique is applied. As a consequence, situations
can arise in which cascade algorithms do not deliver the required number of
propositions, thus decreasing the system’s usefulness. Therefore cascade hy-
brids may be combined with a switching strategy to handle the case in which
the cascade strategy does not produce enough recommendations. One such
hybridization step that switches to weighted strategy was proposed by Zanker
and Jessenitschnig (2009a).

As knowledge-based recommenders produce recommendation lists that are
either unsorted or contain many ties among items’ scores, cascading them with
another technique to sort the results is a natural choice. EntreeC is a knowledge-
based restaurant recommender that is cascaded with a collaborative filtering
algorithm to recommend restaurants (Burke 2002b). However, in contrast to
the definition of cascade hybrid given here, EntreeC uses only the second
recommender to break ties. Advisor Suite is a domain independent knowledge-
based recommender shell discussed in Chapter 4 (Felfernig et al. 2006-07).
It includes an optional utility-based sorting scheme that can further refine
recommendations in a cascade design.

5.4.2 Meta-level hybrids

In a meta-level hybridization design, one recommender builds a model that is
exploited by the principal recommender to make recommendations. Formula



140 5 Hybrid recommendation approaches

(5.8) formalizes this behavior, wherein the nth recommender exploits a model
A that has been built by its predecessor. However, in all reported systems so
far, n has always been 2.

recmeta—level(ua l) = recn(u~ l Arecn,l) (58)

For instance, the Fab system (Balabanovi¢ and Shoham 1997) exploits a col-
laborative approach that builds on user models that have been built by a
content-based recommender. The application domain of Fab is online news.
Fab employs a content-based recommender that builds user models based on a
vector of term categories and the users’ degrees of interest in them. The rec-
ommendation step, however, does not propose items that are similar to the user
model, but employs a collaborative technique. The latter determines the user’s
nearest neighbors based on content models and recommends items that similar
peers have liked. Pazzani (1999b) referred to this approach as collaboration
via content and presented a small user study based on restaurant recommen-
dation. It showed that the hybrid variant performs better than base techniques,
especially when users have only a few items in common. Zanker (2008) eval-
uated a further variant of meta-level hybridization that combines collaborative
filtering with knowledge-based recommendation. The hybrid generates binary
user preferences of the form a — b, where a represents a user requirement
and b a product feature. If, for example, a user of the cigar advisor de-
scribed by Zanker (2008) were looking for a gift and finally bought a cigar
of the brand Montecristo, then the constraint for_-whom = “gift” — brand =
“Montecristo” becomes part of the user’s profile. When computing a recom-
mendation, a collaborative filtering step retrieves all such constraints from a
user’s peers. A knowledge-based recommender finally applies these restric-
tions to the product database and derives item propositions. An evaluation
showed that this approach produced more successful predictions than a manu-
ally crafted knowledge base or an impersonalized application of all generated
constraints.

Golovin and Rahm (2004) applied a reinforcement learning (RL) approach
for exploiting context-aware recommendation rules. The authors exploited dif-
ferent top-N recommendation procedures as well as sequence patterns and
frequent-item sets to generate weighted recommendation rules that are used by
a reinforcement learning component to make predictions. Rules specify which
item should be presented in which situation, where the latter is characterized by
the product content and the user model, including contextual parameters such
as daytime or season of the year. Thus, RL acts as a principal recommender



5.5 Discussion and summary 141

that adjusts the weights of the recommendation rule database based on user
feedback.

5.5 Discussion and summary

In this chapter we discussed the opportunities for combining different algorithm
variants and presented a taxonomy for hybridization designs. In summary, no
single hybridization variant is applicable in all circumstances, but it is well
accepted that all base algorithms can be improved by being hybridized with
other techniques. For instance, in the Netflix Prize competition, the winners
employed a weighted hybridization strategy in which weights were deter-
mined by regression analysis (Bell et al. 2007). Furthermore, they adapted
the weights based on particular user and item features, such as number of rated
items, that can be classified as a switching hybrid that changes between dif-
ferent weighted hybrids according to the presented taxonomy of hybridization
variants.

One of the main reasons that little research focuses on comparing different
recommendation strategies and especially their hybrids is the lack of appropri-
ate datasets. Although collaborative movie recommendations or content-based
news recommenders are comparably well researched application domains, other
application domains for recommender systems and algorithm paradigms re-
ceive less attention. Therefore, no empirically backed conclusions about the
advantages and disadvantages of different hybridization variants can be drawn,
but, depending on the application domain and problem type, different variants
should be explored and compared. Nevertheless, enhancing an existing recom-
mendation application by exploiting additional knowledge sources will nearly
always pay off. With respect to the required engineering effort, the following
can be said.

Monolithic designs are advantageous if little additional knowledge is avail-
able for inclusion on the feature level. They typically require only some ad-
ditional preprocessing steps or minor modifications in the principal algorithm
and its data structures.

Parallelized designs are the least invasive to existing implementations, as
they act as an additional postprocessing step. Nevertheless, they add some addi-
tional runtime complexity and require careful matching of the recommendation
scores computed by the different parallelized algorithms.

Pipelined designs are the most ambitious hybridization designs, because
they require deeper insight into algorithm’s functioning to ensure efficient run-
time computations. However, they typically perform well when two antithetic



142 5 Hybrid recommendation approaches

recommendation paradigms, such as collaborative and knowledge-based, are
combined.

5.6 Bibliographical notes

Only a few articles focus specifically on the hybridization of recommendation
algorithms in general. The most comprehensive work in this regard is Burke’s
article, “Hybrid recommender systems: Survey and experiments”, which ap-
peared in User Modeling and User-Adapted Interaction in 2002. It developed
the taxonomy of recommendation paradigms and hybridization designs that
guided this chapter, and is the most referenced article in this respect. A revised
version appeared as a chapter in the Springer state-of-the-art survey The Adap-
tive Web by the same author in 2007. It not only constitutes a comprehensive
source of reference for published works on hybrid algorithms, but also in-
cludes the most extensive comparative evaluation of different hybrid algorithm
variants. Burke (2007) compared forty one different algorithms based on the
Entree dataset (Burke 1999). In contrast to many earlier comparative studies
on the movie domain (Balabanovi¢ and Shoham 1997, Pazzani 1999b, Sarwar
etal. 2000b), the Entree dataset also allows the exploration of knowledge-based
algorithm variants.

Adomavicius and Tuzhilin (2005) provide an extensive state-of-the-art sur-
vey on current recommender systems’ literature that includes a taxonomy that
differentiates between collaborative and content-based recommenders and hy-
brid variants thereof; however, it lacks a discussion about knowledge-based
algorithms.

Zanker et al. (2007) present a recent evaluation of several algorithm variants
that compares knowledge-based variants with collaborative ones on a commer-
cial dataset from the cigar domain. These experiments were further developed
by Zanker and Jessenitschnig (2009a) with the focus being placed on explicit
user requirements, such as keywords and input, to conversational requirements
elicitation dialogs as the sole type of user feedback. They explored weighted,
switching, and cascade hybridization variants of knowledge-based and collab-
orative recommendation paradigms.



